

Nonpareil

Nonpareil uses the redundancy of the reads in metagenomic datasets to estimate the average
coverage and predict the amount of sequences that will be required to achieve “nearly complete
coverage”.

Contents:

	Install Nonpareil
	Conda installation

	Biocontainer

	Galaxy

	Homebrew

	Source code installation

	Preprocess the reads

	Redundancy
	For the impatient

	Mandatory options

	Common options

	Additional options

	Input

	Output

	Nonpareil curves
	For the impatient

	Nonpareil.curve()

	Nonpareil.set()

	MPI support
	Requirements

	Running Nonpareil MPI

	Resources

	Updates history
	What’s new in 3.3

	What’s new in 3.2

	What’s new in 3.1

	What’s new in 3.0

	What’s new in 2.4

	What’s new in 2.3

Install Nonpareil

Nonpareil can be installed using
conda [https://bioconda.github.io/recipes/nonpareil/README.html], as a
Biocontainer [https://quay.io/repository/biocontainers/nonpareil], with
Galaxy [https://galaxyproject.org/], through Homebrew <https://brew.sh>
or via the source code.

Conda installation

	Install Miniconda [https://conda.io/miniconda.html]

	Configure the channels to access Bioconda [https://bioconda.github.io]:

conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda

	Install Nonpareil:

conda install nonpareil

Biocontainer

	Install Docker [https://docs.docker.com/engine/installation/]

	Pull the container:

$ docker pull quay.io/biocontainers/nonpareil

	Launch the container:

$ docker run -i -t quay.io/biocontainers/nonpareil /bin/bash

Galaxy

You can install Nonpareil on your own Galaxy instance:

	Go the Galaxy admin space

	Search on the main Toolshed [https://toolshed.g2.bx.psu.edu/] for the nonpareil repository available under the “Metagenomics” sections

	Install it

It will automatically install Nonpareil via the conda installation

Homebrew

You can install Nonpareil using Homebrew <https://brew.sh> or
Linuxbrew <http://linuxbrew.sh/>.

	Install Homebrew <https://brew.sh> if you haven’t yet:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

	Get the brewsci/bio <https://brewsci.github.io/homebrew-bio/> tap if you haven’t yet:

$ brew tap brewsci/bio

	Install Nonpareil:

$ brew install nonpareil

Source code installation

System requirements

Nonpareil binary: Nonpareil requires a C++ compiler. It has been tested on
64-bit machines with GCC versions >=4.2.1, running Mac OSX and Red Hat Linux.

Nonpareil MPI: If you want to compile Nonpareil with MPI support, you will
need OpenMPI [http://www.open-mpi.org/] (v > 1.4.3 tested). Other implementations of MPI could work, but
are yet untested.

Nonpareil utilities: Requires R [http://www.r-project.org/]. No additional libraries are necessary.

Compilation

	Get the source

Clone the repository from GitHub [https://github.com/lmrodriguezr/nonpareil]:

git clone git://github.com/lmrodriguezr/nonpareil.git

If you don’t have git [http://git-scm.com/], you can also download the TAR-Ball [https://github.com/lmrodriguezr/nonpareil/tarball/master] and unpack it
with:

tar zxvf nonpareil.tar.gz

	Compile

Change directory into the newly created folder, and compile Nonpareil:

cd nonpareil
make

If you want to compile Nonpareil MPI (see also MPI support), just run:

make nonpareil-mpi

In either case, you can specify the C++ compiler to be used setting the
cpp or mpicpp variables, respectively. For example:

make cpp=/usr/local/bin/g++ nonpareil # This compiles nonpareil with /usr/local/bin/g++
make mpicpp=/usr/local/bin/mpic++ nonpareil-mpi # This compiles nonpareil-mpi with /usr/local/bin/mpic++

	Install

If you want to make Nonpareil available system-wide, just run:

sudo make install

If you don’t have superuser privileges and/or want to install Nonpareil in a
location other than /usr/local, simply set the prefix, for example:

make prefix=$HOME/apps install

You can also change the location of R, if it’s not in the $PATH or
you want to use a non-standard installation:

make prefix=$HOME R=~/bin/R install

Other variables you can set explicitly for the install target are
bindir (binaries directory) and mandir (documentation directory).

Preprocess the reads

Nonpareil expects that the sequencing error is always well below 5%, so we
suggest using an expected error cutoff of 1% (i.e., Q>20, or 1 error in 100
nucleotides). We recommend to perform this task using SolexaQA [http://solexaqa.sourceforge.net/].

Ideally, the reads should be in FastA format (althought Nonpareil can read
FastQ). To transform FastQ into FastA, you can simply use:

Input: reads.fastq
Output: reads.fasta
cat reads.fastq | paste - - - - | awk 'BEGIN{FS="\t"}{print ">"substr($1,2)"\n"$2}' > reads.fasta

Also, if you have paired-end reads, you should use only one sister read per pair
in Nonpareil. If you have them interposed in the same file, you can separate
them using FastA.split.pl [https://github.com/lmrodriguezr/enveomics/blob/master/Scripts/FastA.split.pl]:

Input: reads.fasta
Output: reads.1.fa and reads.2.fa
FastA.split.pl reads.fasta reads 2

Redundancy

If you have large files (>1Gb) and access to a cluster, take a look at MPI support.

For the impatient

Even if you’re in a hurry, taking a look at Preprocess the reads is very important.
If you already did, you can simply run:

nonpareil -s reads.fa -T kmer -f fastq -b output # fastq is recommended for kmer algorithm
nonpareil -s reads.fa -T kmer -f fasta -b output
nonpareil -s reads.fa -T alignment -f fasta -b output # fasta is recommended for alignment algorithm
nonpareil -s reads.fa -T alignment -f fastq -b output

Where reads.fa is the file containing the trimmed single reads, and
output is the prefix of the output files to be created.

Mandatory options

	-s <str>

	Path to the (input) file containing the sequences. This is lowercase S.

	-T <str>

	nonpareil algorithm. can be ‘kmer’ or ‘alignment’.

	-f <str>

	The format of the sequence. Can be ‘fasta’ or ‘fastq’.

Common options

	-b <str>

	Path to the prefix for all the output files. Replaces the options: -a, -C, -l, and -o; generating files
with the suffixes .npa, npc, .npl, and .npo, respectively, unless explicitly set.

	-d <num>

	Subsample iteratively applying this factor to the number of reads, resulting in logarithmic subsampling.
Use -d 0 to fall back to linear sampling, controlled by -m, -M, & -i (this was the default before v2.4).
By default: 0.7.

	-n <int>

	Number of sub-samples to generate per point. If it is not a multiple of the number of threads (see -t),
it is rounded to the next (upper) multiple. By default: 1024.

	-L <num>

	Minimum overlapping percentage of the aligned region on the largest sequence. The similarity (see -S) is
evaluated for the aligned region only. By default: 50.

	-X <int>

	Maximum number of reads to use as query. This is capital X. By default, 1,000 reads.

	-q <str>

	Path to the (input) file containing a second dataset to be used as query, for dataset comparisons. This
option is currently experimental.

	-R <int>

	Maximum RAM usage in Mib. Ideally this value should be larger than the sequences to analyze (discarding
non-sequence elements like headers or quality). This is particularly important when running in multiple
cores (see -t). This value is approximated. By default 1024.
Maximum value in this version: 4194303

	-t <int>

	Number of threads. Highest efficiency when the number of sub-samples (see -n) is multiple of the number
of threads. By default: 2.

	-v <int>

	Verbosity level, for debugging purposes. By default 7. This is lowercase V.

	-V

	Show version information and exit. This is uppercase V.

	-h

	Display this message and exit.

Additional options

	Input/Output

	
	-a <str>

	Path to the (output) file where all data must be saved. This report is not created by default. See the
OUTPUT section.

	-C <str>

	Path to the (output) file where the mating vector is to be saved. This is a capital C.

	-F

	Report the sampled portions as a fraction of the library instead of the number of reads. See -a, -o and
the OUTPUT section.

	-l <str>

	Path to the (output) file where the log of the run must be saved. By default the log is sent only to the
STDERR. If set, the log is sent to both the STDERR and the log file.

	-o <str>

	Path to the (output) file where summary is to be saved. By default the summary is sent to stdout (same
behavior as using a dash ‘-‘). If an empty string ‘’ is provided, does not produce the summary. See the
OUTPUT section.

	Sampling

	
	-m <num>

	Minimum value of sampling portion. By default: 0.

	-M <num>

	Maximum value of sampling portion. By default: 1.

	-i <num>

	Interval between sampling portions. By default: 0.01.

	Mating

	
	-c

	Do not use reverse-complement. This is useful for single stranded sequences data (like RNA). This is a
lowercase C.

	-N

	Treat Ns as mismatches. By default, Ns (unknown nucleotides) match any nucleotide (even another N).

	-S <num>

	Similarity threshold to group two reads together. Reducing this option will increase sensitivity while
increasing running time. This is uppercase S.

	-k <int>

	kmer size. You can increase kmer size to increase sensitivity. By default: 24

	-x <num>

	Probability of taking a sequence into account as query for the construction of the curve. Higher values
reduce accuracy but increase speed. This is lower case x. If set, overides -X.

	Misc

	
	-A

	Autoadjust parameters and re-run. Evaluates the results looking for common problems, adjusts parameters
and re-run the analyses. THIS IS EXPERIMENTAL CODE.

	-r <int>

	Random generator seed. By default current time.

Input

Sequences must be in FastA or FastQ format. See Preprocess the reads.

Output

	Redundancy summary: .npo file

	Tab-delimited file with six columns. The first column indicates the sequencing effort (in number of reads), and the
remaining columns indicate the summary of the distribution of redundancy (from the replicates, 1,024 by default) at
the given sequencing effort. These five columns are: average redundancy, standard deviation, quartile 1, median
(quartile 2), and quartile 3.

	Redundancy values: .npa file

	Tab-delimited file with three columns. Similar to the .npo files, it contains information about the redundancy at
each sequencing effort, but it provides ALL the results from the replicates, not only the summary at each point. The
first column indicates the sequencing effort (as a fraction of the dataset), the second column indicates the ID of
the replicate (a number used only to introduce some controlled noise in plots), and the third column indicates the
estimated redundancy value.

	Mates distribution: .npc file

	Raw list with the number of reads in the dataset matching a query read. A set of query reads is randomly drawn by
Nonpareil (1,000 by default), and compared against all reads in the dataset. Each line on this file corresponds to a
query read (the order is not important). We have seen certain correspondance between these numbers and the distribution
of abundances in the community (compared, for example, as rank-abundance plots), but this file is provided only for
quality-control purposes and comparisons with other tools.

	Log: .npl file

	A verbose log of internal Nonpareil processing. The number to the left (inside squared brackets) indicate the CPU time
(in minutes). This file also provide quality assessment of the Nonpareil run (automated consistency evaluation). Ideally,
the last line should read “Everything seems correct”. Otherwise, it suggests alternative parameters that may improve the
estimation.

Nonpareil curves

The estimation of the Redundancy is at the core of Nonpareil, but it’s
when those values are transformed into average coverage that they become
comporable across samples, and become useful for project design and sample
evaluation.

To build Nonpareil curves, you need two things. First, the Nonpareil.R file
(you can find it in the utils folder of Nonpareil). Second, the .npo
file (or -o value, if you used this option) generated in the estimation of
Redundancy.

For the impatient

First, load the package. If you don’t have it installed yet, you can open R [http://www.r-project.org/] and
execute:

install.packages('Nonpareil');
library(Nonpareil);

If you did make install (Install Nonpareil), you can simply open R [http://www.r-project.org/] and
execute:

library(Nonpareil);

And you can get help messages using any of:

?Nonpareil.curve
?Nonpareil.set
?Nonpareil.legend
?Nonpareil.predict

Now, you can simply execute:

Nonpareil.curve('output.npo'); # Change output.npo to the actual redundancy file.

Nonpareil.curve()

This function can generate a Nonpareil curve from a .npo file. See the
documentation of this function inside R [http://www.r-project.org/] after loading the Nonpareil package:

?Nonpareil.curve

Nonpareil.set()

This function can generate a plot with several Nonpareil curves from .npo
files. See the documentation of this function in R [http://www.r-project.org/] after loading the Nonpareil
package:

?Nonpareil.set

Example: I find it very convenient to first prepare a table with the
samples, something like:

samples.txt
File Name Col
SRS063417.1.L50.npo Posterior fornix "#FFC8C8"
SRS063287.1.L50.npo Buccal mucosa "#FF7878"
SRS062540.1.L50.npo Tongue dorsum "#FF0303"
SRS016335.1.L50.npo Stool "#C8874C"
SRS015574.1.L50.npo Supragingival plaque "#E66478"
SRS019087.1.L50.npo Anterior nares "#DCDC82"

Note that this table is tab-delimited, because I find it easier to read, but you
can use anything you like (and is supported by R [http://www.r-project.org/]). Next, you can simply type
something like this in the R [http://www.r-project.org/] console:

library(Nonpareil);
samples <- read.table('samples.txt', sep='\t', header=TRUE, as.is=TRUE);
attach(samples);
nps <- Nonpareil.set(File, col=Col, labels=Name, plot.opts=list(plot.observed=FALSE));
detach(samples);
summary(nps);

To execute examples with real data included in the package, you can execute:

example(Nonpareil.curve);
example(Nonpareil.set);

MPI support

Nonpareil supports MPI (Message Passing Interface) since v2.2. This code is
stable, but MPI support only covers the alignment kernel, not the k-mer kernel.

Requirements

You will first need OpenMPI [http://www.open-mpi.org/] in your computer. There are other MPI
implementations, but Nonpareil only supports OpenMPI (by now). Once you have it,
you should have at least the C++ compiler (typically mpic++) and the
interactive executable (typically mpirun). If you have the compiler in a
non-standard location (for example, to coexist with mpich), change the value of
mpicpp in the globals.mk file. Once you are ready, simply run:

cd nonpareil # or wherever you have the nonpareil folder
make nonpareil-mpi

That’s it. Now you should have the nonpareil-mpi binary, that you can place
in a location listed in your $PATH if you want.

Running Nonpareil MPI

	Get your machines ready. If you are familiar with MPI skip directly to #3. If
you have your own infrastructure, just make sure they are MPI-capable
(network, permissions, software, etc.). If you are using a cluster, just
request as many machines as you need (see the resources section below). For
example, to request 10 machines with 16 CPUs each in PBS, use
-l nodes=10:ppn=16.

	Obtain the machine names. Just prepare a raw text file with the list of
machines you want to use. If you are using PBS, you can do this by running:

cat $PBS_NODEFILE | awk 'NR%16==0' > hosts.txt # Change the '16' by the number of CPUs you are using (the value of ppn).

	Run Nonpareil MPI. All you need is to call nonpareil-mpi with mpirun.
For example, if you want to use 10 machines, with 16 CPUs each, and the list
of machines is in hosts.txt, then run:

mpirun -np 10 -machinefile hosts.txt nonpareil-mpi -t 16 -s path/to/your/sequences.fasta -b output ...

Note that the options of nonpareil-mpi are the exact same as for
nonpareil. Just remember that the value of -t is the number of
threads per machine, not the total number of CPUs.

Resources

If you are interested on MPI, I’m assuming you have big files, so you may be
also concerned about resources allocation.

	How much memory you will need?

	In the Nonpareil 1 paper [https://doi.org/10.1093/bioinformatics/btt584] (Suppl. Fig. 6) you can see the linear
relationship between maximum required RAM and the size of the dataset. The
function is approximately RAM = Size + 2, where RAM and Size are
both in Gb. You can use less RAM than that, and Nonpareil will adapt, but
it’ll take longer running times. This value is the “maximum required”, which
means that if you assign more RAM than that, it won’t make any difference.
Now, that value is the total RAM required. That means that if you use the MPI
implementation, you can divide Size by the number of computers you are
using, and then apply the function above. For example, if you have a 50Gb
dataset, you will need (maximum) 52Gb (50 + 2) of RAM for the standard
implementation of Nonpareil. However, if you use the MPI version with, for
example, 10 machines, you’ll need (maximum) 7Gb (50/10 + 2) on each machine.

	How many machines you will need?

	I don’t have a large benchmarking yet for the MPI version, but at the end it
really depends on your resources. If you have more machines, it will run
faster (unless you have a very small dataset) and it will require less memory
(as discussed above).

	Should I use more machines or more threads?

	Again, it depends on your resources. Multi-threading is (in general) more
efficient, because it doesn’t have the overhead of network communication.
That means that you should favor more CPUs over more machines. However, there
are some aspects to take into account. One, as discussed above, is the RAM.
More machines = less RAM per machine, while more threads have little impact
on RAM usage (actually, more threads = slighly more RAM). Another catch is
the resources availability. It is possible that you have tens of machines for
your exclusive use, but most likely you are actually sharing resources
through a cluster architecture. If you ask for 64 processors per node
(assuming you have 64-core machines) you will probably have to wait in queue
for quite some time. If you ask for 4 machines, and 64 processors per node,
you will likely be waiting in queue for hours or days. However, the same
number of threads (256) can be gathered by asking for 16 machines, and 16
processors per node. If you do that, you will give the scheduler more
flexibility (note that the nodes=4 ppn=64 is a special case of nodes=16 and
ppn=16) hence reducing your queue time. You may be asking: can I simply ask
for nodes=256 and ppn=1? Well… you can, but as I said multi-threading is
more efficient than multi-nodes, so don’t go to the extremes. Also, Nonpareil
has three expensive steps:

	Reading the fasta, which is strictly linear: only one thread is used in
only one machine. This process is linear in time with the size of the
input file.

	Comparing reads, which is threaded and multi-node. This is by far the most
expensive step, and it is distributed across machines and across CPUs on
each machine. This process is linear in time with the size of the input
file.

	Subsampling, which is threaded but not multi-node. This step is not too
expensive, and it’s nearly constant time. With default parameters, it
takes about 2 minutes with 64 threads, but it grows if you reduce -i.
The time on this step is reduced by more threads (-t), but not by more
machines.

	How can I evaluate the performance in pilot runs?

	I must say: I rarely do pilot runs. However, I’m often interested on
performance for future runs (for example, for other projects). There are two
sources of information that can be handy. One, is the OS itself (or the PBS
output file, if you have a good Epiloge configured). For example, to measure
the total RAM used, the total walltime, real time, user time, etc. Another
source is the .npl file, which contains a log of the Nonpareil run (assuming
you used the -b option). The number in squared brackets is the CPU time
in minutes. Note that the CPU time here is only for the “master” machine.
That means: the number of CPU minutes added for all the threads in the main
machine. Another useful piece of information is the number of “blocks” used.
Ideally, you should have one block per machine; if you have more it means
that the RAM assigned (-R) was insufficient. You can find it right below
the “Designing the blocks scheme…” line. In the ideal scenario (enough
RAM), you should have one Qry block, and as many Sbj blocks as machines (one,
if you are not using the MPI implementation). If you have more than that, you
could attain shorter running times by increasing the RAM (-R).

Updates history

What’s new in 3.3

	Release used in the manuscript “Nonpareil 3: Fast Estimation of Metagenomic
Coverage and Sequence Diversity”.

What’s new in 3.2

	Minor bug fixes and documentation updates.

What’s new in 3.1

	Implemented additional controls for the robustness of the Nonpareil sequence
diversity index (Nd).

	Revamped R code, now with Object-oriented structure and uniform R-style
options. The new package also includes test data and examples and is now
available at CRAN <https://CRAN.R-project.org/package=Nonpareil>.

What’s new in 3.0

	New k-mer kernel: A much faster kernel is now provided as an alternative to
the alignment-based kernel in previous versions.

What’s new in 2.4

	Subsampling now defaults to logarithmic: Previous versions subsampled
linearly, since 2.4 the -d option defaults to 0.7. Options -m, -M, & -i still
exist but they are ignored unless -d is 0.

	Nonpareil diversity: A logarithmic value of diversity is now reported,
indicating the horizontal position of the Nonpareil curves. This value is the
estimated mode of the fitted Gamma CDF, and cannot be calculated if model
fitting fails.

	Experimental dataset comparisons: The -q option allows the paired comparison
of datasets. The expectation is that the difference between the diversity of a
sample by itself (without using -q) and the diversity of the same sample
queried with a second sample (with -q) represents the distance between them.
Note that this method experimental and is not symetric (hence not a real
distance). Usually, the average of the distances in both ways can be used for
clustering of samples.

What’s new in 2.3

	Updates history.

	Nonpareil R package: No changes in the functions were introduced, but they are
now available as an R package complete with documentation. See Nonpareil curves.

	Make’s install target: This includes the installation of binaries, the
manual page, and the new Nonpareil R package.

	Simplified help: Only mandatory and commonly used arguments are now displayed
with nonpareil -h. Complete documentation is maintained both in the manual
page (man nonpareil) and the online documentation [http://nonpareil.readthedocs.org/]. In order to maintain
a centralized documentation, the complete help messages for the Nonpareil R
package are now self-contained, and were removed from the
online documentation [http://nonpareil.readthedocs.org/].

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Nonpareil

 		
 Install Nonpareil

 		
 Conda installation

 		
 Biocontainer

 		
 Galaxy

 		
 Homebrew

 		
 Source code installation

 		
 System requirements

 		
 Compilation

 		
 Preprocess the reads

 		
 Redundancy

 		
 For the impatient

 		
 Mandatory options

 		
 Common options

 		
 Additional options

 		
 Input

 		
 Output

 		
 Nonpareil curves

 		
 For the impatient

 		
 Nonpareil.curve()

 		
 Nonpareil.set()

 		
 MPI support

 		
 Requirements

 		
 Running Nonpareil MPI

 		
 Resources

 		
 Updates history

 		
 What’s new in 3.3

 		
 What’s new in 3.2

 		
 What’s new in 3.1

 		
 What’s new in 3.0

 		
 What’s new in 2.4

 		
 What’s new in 2.3

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

